would be of value only if exceptionally good data were available in a high data-parameter ratio. Nevertheless, the principal features of the molecular vibration are clear. The most rigid section of the ring is centered in the ester group at  $C_1$ ; the thermal parameters at  $O_1$ ,  $C_1$ , and  $C_2$  are less than 4 Å<sup>2</sup>, the lowest values in the structure. This observation supports the suggestion<sup>4</sup> that C<sub>2</sub> behaves like a bridgehead carbon atom in a relatively rigid ring. This proposal was advanced to explain the difficulty of deuterium exchange at  $C_2$ ; the rigidity of the ring was indicated by the temperature independence of the nmr spectrum of the molecule.

The thermal parameters of the groups on either side of the ester group are also relatively low. In fact, all ring atoms in the sequence  $C_6, C_5, \ldots, C_{12}, C_{11}$  have values of B less than 5 Å<sup>2</sup>. The parameters increase markedly at  $C_9$  and  $C_{10}$  and, not unexpectedly, are even larger at the pendant atoms  $O_{9a}$  and  $C_{8a}$ . In a very rigid organic structure, atomic thermal parameters are about 2.0-3.5 Å<sup>2</sup>, and in a very soft structure, values of B range from 6 to 12  $Å^2$  and even higher. Unfortunately, it is rarely possible to distinguish the effects of intramolecular vibrations and group oscillations

from overall rigid-body libration of the molecule. In the present case, the evidence for moderate ring strain and the absence of strong intermolecular interactions indicates that the ring is fairly rigid and that it librates with a maximum amplitude of oscillation at  $O_{9a}$  and  $C_{8a}$ .

Correction of bond lengths for apparent foreshortening due to molecular vibration scarcely seems warranted in the present case. Typically, the corrections are about 0.01 Å; even if the effect is somehow curiously focused at  $C_{10}$ - $C_{11}$ , it is doubtful that it would exceed 0.02 Å at this point. This would still leave this bond inexplicably short. Moreover, since all other bonds in that region of the molecule appear to be of normal length, large libration effects are not indicated.

Acknowledgment. The authors wish to gratefully acknowledge support from the National Institutes of Health (Grants No. GM-14832 and AI-07626, and to J. J. S., Fellowship No. 5-F2AI-43,217-02), from the NSF (GP-13351), and from the Materials Science Center, Cornell University. We thank Professor H. Muxfeldt for helpful discussions.

# Crystal and Molecular Structure of 5,12a-Diacetyloxytetracycline

## R. B. Von Dreele and R. E. Hughes\*

Contribution from the Department of Chemistry, Cornell University, Ithaca, New York 14850. Received April 3, 1971

Abstract: A crystal structure analysis of 5,12a-diacetyloxytetracycline has revealed a conformation of the tetracycline ring structure that differs markedly from the one observed in 5-hydroxytetracycline and in 7-chlorotetracycline. The principal difference between the two conformations involves a drastic twist of  $108.9^{\circ}$  about C<sub>4a</sub>-C<sub>12a</sub> and associated rotations about all contiguous bonds. The detailed geometries at C4, C4a, C5, C5a, and C12a are consistent with the interpretation of recent nmr studies of oxytetracyclines in nonaqueous solvents. The structure was solved by direct methods analysis of data from a crystal with space group  $P2_12_12_1$  and  $a = 18.896 \pm 0.010$ ,  $b = 14.229 \pm 0.007$ ,  $c = 9.406 \pm 0.006$  Å, Z = 4, and density,  $\rho_{caled} = 1.43$  g cm<sup>-3</sup>. An anisotropic least-squares refinement converged to a conventional residual of R = 0.076 for 3124 independent reflections recorded with Mo  $K\alpha$  radiation on an automatic four-circle diffractometer.

The chemistry of tetracycline derivatives has L been reviewed at length in a recent report.<sup>1</sup> The range of conformations accessible to the basic four-ring system and the relative stabilities of different conformers are matters of considerable importance in the formulation and interpretations of detailed reaction mechanisms. Although nmr<sup>2</sup> studies of tetracycline and oxytetracycline derivatives in solution suggest that more than one conformation exists, the crystal structures of two different derivatives were found to be virtually identical; a single molecular conformation emerged from the analyses of the isomorphous hydrochloride salt structures of 7-chlorotetracycline<sup>3,4a,b</sup> (Aureomycin<sup>4c</sup>) (1) and 5-hydroxytetracycline<sup>5,6a</sup> (Terramycin<sup>6b</sup>) (2) and, as well, from circular dichroism studies<sup>7</sup> in dilute aqueous solutions. Since the unit cell was clearly different for crystals of the free base, 5,12a-diacetyloxytetracycline<sup>8</sup> (3), the present study was undertaken with the expectation that a different molecular packing and a new molecular conformation would be revealed. Moreover, a large number of high quality diffraction data were accessible and this provided an opportunity to establish the mo-

D. L. J. Clive, *Quart. Rev., Chem. Soc.*, 22, 435 (1968).
 M. Schach von Wittenau and R. K. Blackwood, *J. Org. Chem.*, 31, 613 (1966).

<sup>(3)</sup> J. Donohue, J. D. Dunitz, K. N. Trueblood, and M. S. Webster, J. Amer. Chem. Soc., 85, 851 (1963).

<sup>(4) (</sup>a) S. Hirokawa, Y. Okaya, F. M. Lovell, and R. Pepinsky, Acta Crystallogr., 12, 811 (1959); (b) Z. Krist., 112, 439 (1959); (c) Registered trademark, American Cyanamid Co.
(5) H. Cid-Dresdner, Z. Kristallogr., Kristallgeometrie, Kristallphys. Kristallchem., 121, 170 (1965).
(6) Y. Takeuchi and M. J. Buerger, Proc. Nat. Acad. Sci., U. S., 46, 1366 (1960); (b) Pagisterad trademark C. E. Pforer, Jac.

<sup>(1960); (</sup>b) Registered trademark, C. F. Pfizer, Inc.
(7) L. A. Mitscher, A. C. Bonacci, and T. D. Sokolski, Antimicrob.

<sup>(</sup>a) Chemother., 78 (1968).
(8) F. A. Hochstein, C. R. Stephens, L. H. Conover, P. P. Regna, R. Pasternack, P. N. Gordon, F. J. Pilgrim, K. J. Brunings, and R. B. Woodward, J. Amer. Chem. Soc., 75, 5455 (1953).

lecular parameters with considerable precision for this moderately complex structure.



#### Experimental Section

The 5,12a-diacetyloxytetracycline,  $C_{26}H_{28}O_{11}N_2$ , was prepared by acylation of 5-hydroxytetracycline (Chas. Pfizer and Co.) with acetic anhydride and was crystallized as well-formed tabular prisms by evaporation of a 2-propanol solution. X-Ray diffraction photographs displayed orthorhombic symmetry with systematic extinctions h00 for h = 2n + 1, 0k0 for k = 2n + 1, and 00l for l =2n + 1, and uniquely conformed to the space group  $P2_12_12_1$ . A total of 32 reflections within the angular range  $30^\circ \le 2\theta \le 42^\circ$ for Mo K $\alpha$  radiation were automatically centered on a Picker FACS-I four-circle diffractometer; a least-squares refinement of the angular settings yielded the lattice parameters  $a = 18.896 \pm$  $0.010 \text{ Å}, b = 14.229 \pm 0.007 \text{ Å}, \text{ and } c = 9.406 \pm 0.006 \text{ Å}$  which for Z = 4 gives  $\rho_{ealed} = 1.430 \text{ g/cm}^3$  ( $\rho_{calcd} = 1.44 \text{ g/cm}^3$ ).

The diffraction intensities were measured on a 0.55 mm imes 0.32 mm  $\times$  0.12 mm crystal using Zr filtered Mo K $\alpha$  radiation at a take-off angle of 3.5° with the diffractometer operating in the  $\theta$ -2 $\theta$  scan mode. The scans, with a systematic allowance for dispersion, were taken at 1°/min over 1.35-1.70° with 20-sec background counts at each end of the scan. Of the 3292 independent reflections investigated (sin  $\theta/\lambda \leq 0.6486$ ) a total of 3124 were retained as objectively observed with  $|F_0| > 0.675\sigma_{\rm F}$ ;  $\sigma_{\rm F} = 0.02$ .  $|F_{o}| + (C + k^{2}B)^{1/2}/(2|F_{o}|L_{p})$ , wherein C is the total count in a scan and k is the ratio of scanning time to the time for the total background count B. Periodic monitoring of three reflections showed a maximum of 5% random variation in intensity over a 10day period. Corrections were applied for Lorentz and polarization effects but absorption and extinction effects proved to be negligible. An average thermal parameter (2.61 Å<sup>2</sup>) and a scale factor (1.78), required for the calculation of normalized structure factors  $|E_{hkl}|$ , were obtained from a Wilson analysis.10

Structure Determination and Refinement. A starting set (Table I) of 11 phase angles was developed for the initial phase determina-

Table I. Starting Set for Phase Determination

| h | k | l | E    | Phase                   |
|---|---|---|------|-------------------------|
| 0 | 0 | 8 | 4.57 | 0                       |
| 0 | 4 | 4 | 2.52 | 0                       |
| 0 | 6 | 4 | 2.43 | $\pi$                   |
| 0 | 8 | 4 | 1.98 | 0                       |
| 0 | 4 | 2 | 1,76 | 0                       |
| 7 | 5 | 0 | 3.00 | $\pi/2$                 |
| 1 | 0 | 7 | 2.29 | $\pi/2$                 |
| 0 | 1 | 8 | 2.90 | $\pi/2$                 |
| 8 | 8 | 5 | 2.82 | $\pm \pi/4, \pm 3\pi/4$ |
| 7 | 9 | 4 | 2.92 | $\pm \pi/4, \pm 3\pi/4$ |
| 4 | 1 | 4 | 2.71 | $\pm \pi/4, \pm 3\pi/4$ |

tion. The first five reflections were those with the highest |E| values in a set of 18 0kl (k, l = 2n) with consistent  $\Sigma_2$  interactions.<sup>11</sup> The next three, being linearly independent reflections, were arbitrarily assigned12 phases to specify the origin. The last three reflections

were assigned combinations of the phases  $\pm \pi/4$  and  $\pm 3\pi/4$  in a computerized<sup>13</sup> multiple-solution calculation of phases for 232 additional reflections. The resulting set with the highest average consistency index14 yielded 56 phases with consistency indices greater than 0.5. These were used in a calculation of modified  $\Sigma^2$ interactions, <sup>15</sup>  $\varphi \vec{h} = \Sigma |E \vec{k} E \vec{h} - \vec{k}| (\varphi \vec{k} + \varphi \vec{h} - \vec{k}) / \Sigma \varphi |E \vec{k} E \vec{h} - \vec{k}|,$ in a set of 301 reflections. This yielded 184 phases determined with consistency indices greater than 0.35. Three subsequent iterations of tangent refinement<sup>16</sup> yielded a set of 283 phases with an average consistency index of 0.466. In a Fourier synthesis utilizing these phases, 12 maxima were identified as a fragment of the molecule containing the A ring. The vector distribution from these 12 atoms reflected some of the prominent features of the Patterson synthesis but a Fourier synthesis (sin  $\theta/\lambda = 0.43$ ) phased with them (R = 0.63) 0.60) contained no other maxima. At this point, a procedure based upon one suggested by Karle<sup>17</sup> was used for the introduction of partial structure information into the tangent refinement of phases. The process is summarized in Table II; the full structure was de-

Table II. Summary of Structure Development by Tangent Refinement<sup>a</sup>

| Stage | Atoms I         | put——<br>Reflections | Phases | -Output-<br>Atoms | R <sup>d</sup> |
|-------|-----------------|----------------------|--------|-------------------|----------------|
| I     | b               | 301                  | 283    | 12                | 0.60           |
| II    | 12 <sup>c</sup> | 300                  | 286    | 25                | 0.47           |
| III   | 24°             | 360                  | 356    | 35                | 0.38           |
|       |                 |                      |        |                   |                |

<sup>a</sup> Three iterations were applied at each stage with rejection criteria set at  $C_{\min} = 0.10$  and, also, <sup>15</sup>  $\alpha_{\min} = 2.00$ . <sup>b</sup> Expansion of 11 reflection starting sets. c All atoms as point carbon atoms with f =6 and B = 0, d All atoms as carbon atoms with  $B = 2.75 \text{ Å}^2$ .

veloped from the final 35 atom positions by difference Fourier synthesis. Reexamination of the E synthesis based upon the first set of 283 phases revealed that 30 of the 39 highest maxima corresponded to atomic positions.

The model was refined with isotropic thermal parameters by full-matrix, least-squares<sup>18</sup> analysis with each reflection assigned a weight  $w = 1/\sigma_F^2$  and with atomic scattering factors for C<sup>0</sup>, N<sup>0</sup>, and O<sup>o</sup> calculated by Cromer and Mann.<sup>19</sup> At convergence the standard residual was R = 0.114 and the weighted residual,  $R_w$ =  $(\Sigma w(|F_o| - |F_c|)^2 / \Sigma w |F_o|^2)^{1/2}$ , was 0.111. A difference Fourier synthesis based on these results allowed objective placement of nearly all the hydrogen atoms. The parameters for the nonhydrogen atoms were again refined by full-matrix, least-squares to yield R = 0.101 and  $R_w = 0.104$ . Six final cycles of refinement of the model with anisotropic thermal motion by block-diagonal least squares converged with R = 0.076 and  $R_w = 0.076$ . The total number of independent parameters was 352; all hydrogen atoms were included with fixed parameters and a fixed value of B= 4 Å<sup>2</sup>. The estimated error in a reflection of unit weight was 0.759 for the final refinement.<sup>20</sup>

### Results

Final atomic coordinates and thermal parameters for 5,12a-diacetyloxytetracycline are presented in Tables III, IV, and V along with the estimated standard deviations derived from the least-squares analysis.

(13) C. C. Tsai, Ph.D. Thesis, Indiana University, 1968.

(14) M. G. B. Drew, D. H. Templeton, and A. Zalkin, Acta Crystallogr., Sect. B, 25, 261 (1969).

(15) J. Karle and I. L. Karle, ibid., 21, 849 (1966).

(16) J. Karle and H. Hauptman, ibid., 9, 635 (1956).

(17) J. Karle, ibid., Sect. B, 24, 182 (1968).

(18) W. R. Busing and H. A. Levy, ORF-LS, A Fortran Crystallographic Least-Squares Program, ORNL-TM-305, Oak Ridge National Laboratory, Oak Ridge, Tenn., 1962.

(19) D. T. Cromer and J. B. Mann, Acta Crystallogr., Sect. A, 24, 321 (1968).

(20) A table of observed and calculated structure amplitudes from the final refinement has been deposited as Document No. NAPS-01557 with the ASIS National Auxiliary Publications Service, c/o CCM Information Corp., 909 3rd Ave., New York, N. Y. 10002. A copy may be secured by citing the document number and by remitting \$5.00 for photocopies or \$2.00 for microfiche. Advance payment is required. Make checks or money order payable to ASIS-NAPS.

<sup>(9)</sup> We are indebted to H. Muxfeldt for a sample of this material.

<sup>(10)</sup> A. J. C. Wilson, *Nature (London)*, 150, 151 (1942).
(11) H. Hauptman and J. Karle, "Solution of the Phase Problem. I. The Centrosymmetric Crystal," A.C.A. Monograph No. 3, Polycrystal Book Service, New York, N.Y., 1953.

<sup>(12)</sup> H. Hauptman and J. Karle, Acta Crystallogr., 9, 45 (1956).



Figure 1. A perspective representation of the structure of 5,12adiacetyloxytetracycline.

The perspective view shown in Figure 1 displays the essential configurational and conformational features of the molecule. Each atom is represented by an

Table III. Atomic Fractional Coordinatesª

| Atom              | 10 <sup>4</sup> x | 10 <sup>4</sup> y | 10 <sup>4</sup> z |
|-------------------|-------------------|-------------------|-------------------|
| C                 | 4893 (2)          | 2845 (3)          | 1049 (4)          |
| $C_2$             | 4175 (2)          | 3171 (3)          | 1062 (4)          |
| $C_3$             | 3861 (2)          | 3544 (2)          | 2282 (4)          |
| C <sub>4</sub>    | 4231 (2)          | 3590 (2)          | 3732 (4)          |
| $C_{4a}$          | 4877 (2)          | 2910 (2)          | 3771 (4)          |
| C <sub>5</sub>    | 5320 (2)          | 3083 (2)          | 5092 (4)          |
| C <sub>5a</sub>   | 5893 (2)          | 3872 (3)          | 4982 (4)          |
| C <sub>6</sub>    | 5889 (2)          | 4546 (3)          | 6264 (4)          |
| $C_{6a}$          | 6510 (2)          | 5224 (3)          | 6105 (5)          |
| C7                | 6934 (2)          | 5494 (3)          | 7241 (5)          |
| C <sub>8</sub>    | 7492 (2)          | 6130 (3)          | 7018 (6)          |
| $C_9$             | 7622 (2)          | 6526 (3)          | 5705 (6)          |
| $C_{10}$          | 7178 (2)          | 6287 (3)          | 4572 (5)          |
| $C_{10a}$         | 6635 (2)          | 5628 (3)          | 4742 (4)          |
| $C_{11}$          | 6217 (2)          | 5318 (3)          | 3517 (4)          |
| $C_{11a}$         | 5855 (2)          | 4422 (2)          | 3597 (4)          |
| $C_{12}$          | 5580 (2)          | 4053 (2)          | 2405 (4)          |
| $C_{12a}$         | 5314 (2)          | 3045 (2)          | 2407 (4)          |
| $O_1$             | 5186 (2)          | 2437 (2)          | 60 (3)            |
| $C_{2x}$          | 3767 (2)          | 3213 (3)          | -264 (5)          |
| $N_2$             | 4035 (2)          | 2856 (3)          | -1460 (4)         |
| $O_2$             | 3162 (2)          | 3608 (2)          | -291 (4)          |
| $O_3$             | 3228 (1)          | 3886 (2)          | 2268 (3)          |
| $N_4$             | 3777 (2)          | 3435 (2)          | 4966 (4)          |
| $C_{4x}$          | 3303 (2)          | 2613 (3)          | 4886 (5)          |
| $C_{4y}$          | 3407 (2)          | 4284 (3)          | 5462 (5)          |
| $O_{5x}$          | 5739 (1)          | 2228 (2)          | 5393 (3)          |
| $C_{5x}$          | 5442 (2)          | 1541 (3)          | 6145 (5)          |
| $O_{5y}$          | 4859 (2)          | 1566 (2)          | 6645 (4)          |
| $C_{5y}$          | 5927 (4)          | 698 (4)           | 6232 (8)          |
| $O_6$             | 5235 (2)          | 5056 (2)          | 6152 (3)          |
| $C_{6x}$          | 5920 (3)          | 4005 (4)          | 7663 (5)          |
| $O_{10}$          | 7313 (2)          | 6701 (2)          | 3306 (4)          |
| $O_{11}$          | 6233 (2)          | 5782 (2)          | 2362 (3)          |
| $O_{12}$          | 5554 (2)          | 4486 (2)          | 1145 (3)          |
| O <sub>12ax</sub> | 5968 (1)          | 2520 (2)          | 2422 (3)          |
| $C_{12ax}$        | 5957 (2)          | 1557 (3)          | 2443 (4)          |
| O <sub>12ay</sub> | 5434 (1)          | 1103 (2)          | 2485 (4)          |
| $C_{12ay}$        | 6704 (2)          | 1214 (3)          | 2452 (6)          |

<sup>a</sup> The numbers in parentheses are estimated standard deviations in the last significant figure.

ellipsoid consistent with the anisotropic thermal parameters in Table IV. The six chiral centers are (R)-C<sub>4</sub>, (R)-C<sub>4a</sub>, (S)-C<sub>5</sub>, (R)-C<sub>5a</sub>, (S)-C<sub>6</sub>, and (R)-C<sub>12a</sub>. Since the absolute configuration at  $C_6$  has been determined.<sup>21</sup> the molecule is shown in the correct enantiomorphic form.

Bond lengths and bond angles within the molecule are systematically recorded in Table VI. The carefully selected set of dihedral angles listed in Table VII fully characterizes all of the conformational features of the molecule; a similar set, calculated from the data given for 5-hydroxytetracycline,<sup>5</sup> is provided for comparison.

#### Discussion

The A Ring. Apart from the dihedral angles (see explanation, Table VII) which determine the relative orientations of the A and B rings (vide infra), the most interesting structural parameters in the A ring are found in the sequence  $C_1-C_2-C_3$  and its associated pendant groups. All other bonds in the ring,  $C_3-C_4$ ,  $C_4-C_{4a}$ ,  $C_{4a}-C_{12a}$ , and  $C_{12a}-C_1$ , have lengths and angles that lie well within the normal range for C-C single bonds.

The bond lengths and angles at  $C_1$ - $C_2$  (1.434 Å) and  $C_2$ - $C_3$  (1.397 Å) are characteristic of an sp<sup>2</sup> conjugated system (cf. 1.397 Å in benzene<sup>22</sup>). Neither these results nor those reported earlier<sup>3,5</sup> are compatible with the formal assignment of a double bond at  $C_2$ - $C_3$ . Atom  $C_1$  and the three atoms directly bonded to it form a plane with an average out-of-plane distance of  $\pm 0.001$  Å. Similarly, for C<sub>2</sub>, C<sub>3</sub>, C<sub>4</sub>, O<sub>3</sub> and C<sub>1</sub>, C2, C3, C2x, the average deviations from planarity are  $\pm 0.0007$  Å and  $\pm 0.004$  Å, respectively. The slight nonplanarity of the bonded sequence  $O_1 - C_1 - C_2 - C_3 - O_3$  $(\pm 0.027 \text{ \AA})$  reflects the constraints imposed upon this partially conjugated system by the ring on one side and by the strong hydrogen bonding interactions between  $O_1 \cdots N_2$  and  $O_2 \cdots O_3$  on the other side.

The amide group at C<sub>2</sub> appears to be partially conjugated into the  $O_1 \cdots O_3$  sequence. The C-N distance (1.335 Å) is normal<sup>23</sup> (cf. 1.33 Å in succinamide<sup>24</sup>) but the carbonyl bond length (1.274 Å) is distinctly elongated and the  $C_{2x}$ - $C_2$  distance (1.468 Å) has the typical length of a single bond in a conjugated double bond system. As would be expected, the enolic sequence  $O_2-C_{2x}-C_2-C_3-O_3$  is moderately planar (±0.018 Å); the sequence  $O_1 - C_1 - C_2 - C_{2x} - N_2$  is somewhat less planar with an average out-of-plane distance of  $\pm 0.031$  Å.

In the enolic system the  $C_3$ - $O_3$  bond length (1.291 Å) is normal (cf. 1.287 Å in acetylacetone<sup>25</sup>) and the  $O_2 \cdots O_3$  contact distance (2.443(5) Å) is on the short end of the normal range (cf. 2.44 Å in hydrogen maleate<sup>26</sup> and 2.55 Å in hexafluoroacetylacetone<sup>27</sup>). This indicates strong hydrogen bonding between O2 and O<sub>3</sub> with an O<sub>3</sub>-H<sub>3</sub> distance of 0.98 Å, an O<sub>2</sub>-H<sub>3</sub> distance of 1.55 Å, and an O<sub>3</sub>-H<sub>3</sub>-O<sub>2</sub> angle of 150°.

(21) V. N. Dobrynin, A. I. Gurevitch, M. C. Karapetyan, M. N.

Kolosov, and M. M. Shemyakin, *Tetrahedron Lett.*, 901 (1962). (22) A. Langseth and B. P. Stoicheff, *Can. J. Phys.*, 34, 350 (1956). (23) Since  $C_{2x}$ -N<sub>2</sub> is 1.335 Å and  $C_{2x}$ -O<sub>2</sub> is 1.274 Å in the present structure, the curious results reported 3.5 for the other tetracyclines  $(C_{2x}-O_2 \text{ at } 1.31-1.32 \text{ Å and } C_{2x}-N_2 \text{ at } 1.28-1.30 \text{ Å})$  are not supported. In view of the considerably greater accuracy inherent in the present analysis, it is probably not useful to contemplate detailed chemical or structural interpretation of those results.

(24) D. R. Davies and R. A. Pasternak, Acta Crystallogr., 9, 334 (1956).

(25) A. L. Andreassen and S. H. Bauer, to be published.

(26) S. W. Peterson and H. A. Levy, J. Chem. Phys., 29, 948 (1958).
(27) A. L. Andreassen, D. Zebelman, and S. H. Bauer, J. Amer. Chem. Soc., 93, 1148 (1971).

Journal of the American Chemical Society | 93:26 | December 29, 1971

Table IV. Thermal Parameters for 5,12a-Diacetyloxytetracycline<sup>a</sup>

|                  | <i>_</i>                        | Anisotropic parameters, Å <sup>2</sup> |                                           |                        |                 |                 |               |
|------------------|---------------------------------|----------------------------------------|-------------------------------------------|------------------------|-----------------|-----------------|---------------|
| Atom             | $B_{11}$                        | $B_{22}$                               | B <sub>33</sub>                           | <i>B</i> <sub>12</sub> | B <sub>13</sub> | B <sub>23</sub> | $B_{iso}{}^b$ |
| C1               | 2.7(1)                          | 2.2(1)                                 | 2.0(1)                                    | -0.4(1)                | 0.1 (1)         | 0.0(1)          | 2.2           |
| $\overline{C_2}$ | 2.5(2)                          | 2,1(1)                                 | 2.2(2)                                    | -0.3(1)                | -0.1(1)         | -0.1(1)         | 2.3           |
| C <sub>3</sub>   | 2.4(1)                          | 1.7 (1)                                | 3,1(2)                                    | -0.3(1)                | -0.5(1)         | 0.5(1)          | 2.3           |
| C,               | 2.0(1)                          | 2.1(1)                                 | 2.5(2)                                    | -0.1(1)                | 0.3(1)          | -0.2(1)         | 2.1           |
| Č49              | 1.9(1)                          | 1.9 (1)                                | 2.2(1)                                    | 0.0(1)                 | 0.4(1)          | -0.2(1)         | 2.0           |
| Č,               | 2.4(1)                          | 2.2(1)                                 | 2.0(1)                                    | 0.2(1)                 | -0.0(1)         | 0.3(1)          | 2.1           |
| Č.               | 2.0(1)                          | 2.3(1)                                 | 2.1(1)                                    | -0.1(1)                | -0.0(1)         | 0.4 (1)         | 2.1           |
| Č,               | 2.9(2)                          | 3 3 (2)                                | 1.9(2)                                    | -0.3(1)                | -0.1(1)         | -0.4(1)         | 2.6           |
| Č                | 2.5(2)                          | 2.5(2)                                 | 3.4(2)                                    | 0.2(1)                 | -0.5(2)         | -0.5(1)         | 2.7           |
| Č,               | 3.4(2)                          | 3.6(2)                                 | 3.7(2)                                    | -0.0(2)                | -1.0(2)         | -0.5(2)         | 3.5           |
| Č.               | 3, 2(2)                         | 3.1(2)                                 | 5.5(3)                                    | 0.2(2)                 | -1.5(2)         | -1.6(2)         | 3.4           |
| Č                | 2, 7, (2)                       | 27(2)                                  | 5.3(3)                                    | -0.3(2)                | -1.0(2)         | -0.5(2)         | 3.3           |
| C <sub>10</sub>  | 2.7(2)                          | 2, 0, (2)                              | 4.6(2)                                    | 0.1(1)                 | -0.1(2)         | -0.1(2)         | 2.9           |
|                  | 2.7(2)<br>2.4(1)                | 2.0(1)                                 | 2.6(2)                                    | 0.0(1)                 | -0.1(1)         | -0.4(1)         | 2.3           |
| Cu               | 19(1)                           | 22(1)                                  | 2.8(2)                                    | 0.2(1)                 | 0.1(1)          | 0.0(1)          | 2.3           |
| C <sub>11</sub>  | 1 9 (1)                         | 1.9(1)                                 | 2.0(1)                                    | -0.0(1)                | 0.1(1)          | 0.0(1)          | 1.9           |
|                  | 21(1)                           | 1 9 (1)                                | 2 2 (2)                                   | 0.1(1)                 | 0.3(1)          | 0.1(1)          | 2.1           |
| C12              | $\frac{2}{2}$ 1 (1)             | 2 2 (1)                                | 1.7(1)                                    | -0.3(1)                | 0.1(1)          | -0.1(1)         | 2.0           |
| 0,               | $\frac{1}{3}$ $\frac{7}{7}$ (1) | 43(1)                                  | 24(1)                                     | -0.0(1)                | 0.1(1)          | -0.6(1)         | 3.3           |
|                  | 3.6(2)                          | 24(2)                                  | $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{2}$ | -0.7(1)                | -1.0(2)         | 0.3(2)          | 2.9           |
| N2               | 4 4 (2)                         | 5 2 (2)                                | 2.9(2)                                    | -0.0(2)                | -0.9(2)         | -0.5(2)         | 3.9           |
| 0,               | 3.6(1)                          | 46(1)                                  | 3.9(2)                                    | 0.2(1)                 | -1.4(1)         | 0.2(1)          | 3.8           |
| Õ,               | 2.6(1)                          | 3.5(1)                                 | 3.5(1)                                    | 0.7(1)                 | -0.5(1)         | -0.0(1)         | 3.1           |
| N,               | 2.1(1)                          | 2.9(1)                                 | 2.7(1)                                    | -0.3(1)                | 0.5(1)          | -0.1(1)         | 2.5           |
| Č.               | 3, 2(2)                         | 3.8(2)                                 | $\overline{3}, \overline{7}, (2)$         | -0.7(2)                | 0.8(2)          | 0.2(2)          | 3.5           |
| Č                | 3, 3(2)                         | 3.9(2)                                 | 4.0(2)                                    | 0.3(2)                 | 1, 1 (2)        | -0.9(2)         | 3.5           |
| O <sub>sy</sub>  | 2.9(1)                          | 2.3(1)                                 | 2.7(1)                                    | 0.3(1)                 | 0.4(1)          | 0.9(1)          | 2.5           |
| Čix              | 3.8(2)                          | 2.6(2)                                 | 3.4(2)                                    | 0.2(2)                 | 0.5(2)          | 0.6(2)          | 3.2           |
| Õ sv             | 4, 4(2)                         | 3.8(1)                                 | 5.1(2)                                    | -0.1(1)                | 1.7(1)          | 1.5(1)          | 4.0           |
| Č sy<br>Č sy     | 7.7 (5)                         | 5.0(3)                                 | 9.2(4)                                    | 2.4(3)                 | 3.8(4)          | 4.6(3)          | 5.3           |
| Õ,               | 2.7(1)                          | 40(1)                                  | 4 1 (2)                                   | 0.2(1)                 | 0.6(1)          | -1.7(1)         | 3.3           |
| Č                | 5 3 (2)                         | 6 0 (3)                                | 2.1(2)                                    | -2.3(2)                | -0.4(2)         | 0.3(2)          | 3.8           |
| Õ.               | $4^{2}(1)$                      | 28(1)                                  | 4.7(2)                                    | -1.4(1)                | -0.2(1)         | 0.3(1)          | 3 6           |
| 0 <sub>10</sub>  | 3.6(1)                          | 2.0(1)<br>2.4(1)                       | 3 3 (1)                                   | -0.9(1)                | -0.2(1)         | 0.8(1)          | 29            |
|                  | 40(1)                           | 2.7(1)                                 | 1.8(1)                                    | -0.7(1)                | -0.2(1)         | 0.5(1)          | 2.6           |
| O12              | 22(1)                           | $\frac{2}{2} 0 (1)$                    | 2.6(1)                                    | 0.0(1)                 | 0.5(1)          | -0.0(1)         | 2.2           |
| Cirar            | 30(2)                           | 2 3 (1)                                | 2.8(2)                                    | 0.0(1)                 | 0.7(2)          | -0.2(1)         | 2.6           |
| O12ax            | 3.1(1)                          | $\frac{2}{2} \frac{3}{8} (1)$          | 5.6(2)                                    | -0.6(1)                | 0.6(1)          | -0.5(1)         | 3.6           |
| Ciray            | 35(2)                           | $\frac{2}{3} 0 (2)$                    | 6.8(3)                                    | 0.7(2)                 | 0.9(2)          | 0.3(2)          | 4.1           |
|                  | 5.5(2)                          | 5.0(2)                                 | 0.0(0)                                    |                        | 0.2 (2)         |                 | 7.4           |

<sup>a</sup> Numbers in parentheses are estimated standard deviations in the last significant figure. The relation between  $B_{ij}$  in Å<sup>2</sup> and the dimensionless  $\beta_{ij}$  used during refinement is  $B_{ij} = 4\beta_{ij}/a_i^*a_j^*$ . <sup>b</sup> Isotropic thermal parameter calculated from  $B_{iso} = 4[V^2 \det(\beta_{ij})]^{1/3}$ .

The interaction of the amide group with the rather normal carbonyl  $C_1$ -O<sub>1</sub> (1.229 Å) is moderately strong; the hydrogen bond distance between O<sub>1</sub> and N<sub>2</sub> is 2.669 Å with an N-H distance of 1.14 Å, an O-H distance of 1.67 Å, and an N-H-O angle of 142°.

The B Ring. A careful examination of the data in Table VI reveals bonding parameters at atoms  $C_{4a}$ ,  $C_5$ ,  $C_{5a}$ , and  $C_{12a}$  that lie in the normal range for a constrained ring system. The acetoxy groups at  $C_5$ and  $C_{12a}$  are also normal and exhibit nearly identical geometries. The five atoms  $C_{12a}$ ,  $O_{12ax}$ ,  $C_{12ax}$ ,  $C_{12ay}$ ,  $O_{12ay}$  are remarkably coplanar ( $\pm 0.004$  Å), but the corresponding group at  $C_5$  has a larger average outof-plane distance ( $\pm 0.020$  Å).

The bond at  $C_{11a}$ - $C_{12}$  is 1.352(5) Å which is precisely the value for a localized double bond. Appropriately, the bond angles at  $C_{11a}$  are very close to 120°; at  $C_{12}$ the  $C_{11a}$ - $C_{12}$ - $O_{12}$  bond angle is opened somewhat to 125.1° probably as a result of the interaction of  $O_{12}$ with  $O_{11}$ .

Moreover, the other bonds at  $C_{11a}$  and  $C_{12}$  seem to be characteristic of a conjugated system. Thus, the bond  $C_{12}$ - $O_{12}(H)$  is 1.337(5) Å, which is intermediate between a normal C-O(H) (1.43 Å) and a normal carbonyl bond (1.22 Å). Similarly, in the C ring the  $C_{11a}$ - $C_{11}$  bond is 1.449(5) Å, which is intermediate between a single C-C bond (1.54 Å) and a double bond (1.335 Å).

The C Ring. The partially conjugated system starting at  $O_{12}$  appears to extend across the C ring through  $C_{11a}$ ,  $C_{11}$ ,  $O_{11}$ , and  $C_{10a}$  and on into the D ring. The carbonyl bond  $C_{11}$ – $O_{11}$  is somewhat extended (1.271 Å) and the  $C_{10a}$ – $C_{11}$  bond is of intermediate length at 1.464(6) Å. All bond angles at  $C_{11a}$ ,  $C_{11}$ , and  $C_{10a}$  are very close to 120° but there is considerable puckering in the entire sequence as can be seen from the dihedral angles  $C_{10}$ – $C_{10a}$ – $C_{11}$ – $C_{11a}$ ,  $C_{10a}$ – $C_{11}$ – $C_{12a}$ – $C_{12a}$  which are 157.4, –168.0, and 169.3°, respectively.

The carbonyl oxygen  $O_{11}$  is involved in two intramolecular hydrogen bonds with the protons on  $O_{10}$ and  $O_{11}$  at distances of 2.581(4) and 2.521(4) Å, respectively; the indicated hydrogen atom positions correspond to moderately bent hydrogen bonds. All other bonding in the ring is normal.

The D Ring. All C–C bonds in this aromatic ring average 1.399(13) Å, a value identical with that found in benzene. The  $C_{10}$ – $O_{10}$  bond length is 1.352(6) Å which is the same value reported for resorcinol.<sup>28</sup> All

<sup>(28)</sup> G. E. Bacon and N. A. Curry, Proc. Roy. Soc., Ser. A, 235, 552 (1956).

7294 Table V. Hydrogen Atomic Parameters<sup>a</sup>

| Atom              | Bound<br>to       | 10³x | 10 <sup>8</sup> y | 10 <sup>3</sup> z | Bond,<br>Å    |
|-------------------|-------------------|------|-------------------|-------------------|---------------|
| H21               | $N_2$             | 460  | 260               | -125              | 1.14          |
| $H2_2$            | $\mathbf{N}_2$    | 380  | 285               | -250              | 1.08          |
| H3                | $O_3$             | 315  | 400               | 125               | 0. <b>9</b> 8 |
| H4                | C₄                | 440  | 425               | 385               | 1.00          |
| $H4x_1$           | $C_{4x}$          | 295  | 275               | 420               | 0.95          |
| $H4x_2$           | C <sub>4x</sub>   | 305  | 265               | 5 <b>9</b> 0      | 1.07          |
| H4x₃              | C <sub>4x</sub>   | 360  | 205               | 475               | 0. <b>99</b>  |
| $H4y_1$           | $C_{4y}$          | 320  | 410               | 635               | 0.96          |
| $H4y_2$           | $C_{4y}$          | 300  | 450               | 500               | 0.94          |
| H4y₃              | $C_{4y}$          | 360  | 490               | 535               | 0.95          |
| H4a               | $C_{4a}$          | 475  | 220               | 385               | 1.04          |
| H5                | $C_5$             | 500  | 320               | 610               | 1.14          |
| H5y1              | $C_{5y}$          | 640  | 80                | 575               | 1.01          |
| $H5y_2$           | $C_{5y}$          | 575  | 0                 | 655               | 1.09          |
| H5y₃              | $C_{5y}$          | 600  | 60                | 750               | 1.21          |
| H5a               | $C_{5a}$          | 635  | 350               | 515               | 1.02          |
| <b>H</b> 6        | $O_6$             | 520  | 580               | 675               | 1.20          |
| $H6x_1$           | $C_{6x}$          | 560  | 345               | 800               | 1.04          |
| H6x2              | C <sub>6x</sub>   | 640  | 395               | 800               | 0.96          |
| H6x₃              | $C_{6x}$          | 580  | 460               | 850               | 1.18          |
| H7                | $C_7$             | 680  | 520               | 840               | 1.20          |
| H8                | $C_8$             | 780  | 655               | 780               | 1.11          |
| H9                | C <sub>9</sub>    | 800  | 700               | 550               | 1.00          |
| <b>H</b> 10       | $O_{10}$          | 720  | 640               | 250               | 0.90          |
| H12               | $O_{12}$          | 585  | 505               | 125               | 0.98          |
| $H12a_1$          | $C_{12ay}$        | 685  | 160               | 325               | 0.97          |
| <b>H</b> 12a₂     | $C_{12ay}$        | 685  | 55                | 275               | 1.02          |
| H12a <sub>3</sub> | C <sub>12ay</sub> | 680  | 140               | 150               | 0.95          |

<sup>a</sup> Reasonable estimates of the error in the fractional coordinates and the bond lengths are  $\sim 0.005$  and  $\sim 0.1$  Å, respectively.

bond angles are close to  $120^{\circ}$  and all atoms lie within an average distance of 0.012 Å of a mean plane.

The Molecular Conformation. The tetracycline ring system in the present structure exhibits a conformation that differs markedly from the one observed in the hydrochloride salt structures of 7-chlorotetracycline<sup>3,4</sup> and 5-hydroxytetracycline.<sup>5,6</sup> As can be seen from the stereoscopic drawings in Figure 2 and Figure 3 and from the listing of dihedral angles in Table VII, the major differences between the two conformations appear in the A and B rings. As would be expected, the aromatic D rings are virtually identical and the partially conjugated sequence that extends from O<sub>12</sub> to C<sub>10a</sub> apparently stabilizes the conformation of the C ring.

The transition between the two conformers involves a drastic twist of 108.9° about the bond  $C_{4a}$ - $C_{12a}$  at the juncture of the A and B rings. This is necessarily accompanied by similar rotations around all four contiguous ring bonds; in the A ring these are  $C_{4a}$ - $C_4$ (95.8°) and  $C_{12a}$ - $C_1$  (94.1°), and in the B ring they are  $C_{12a}$ - $C_{12}$  (87.9°) and  $C_{4a}$ - $C_5$  (103.3°). The associated changes that occur elsewhere in the two rings, while nontrivial, are very much smaller. In the A ring this reflects the rigidity of the amide stabilized sequence from  $O_1$  to  $O_3$ . The relatively rigid geometry of the C ring imparts stability to  $C_5$  and  $C_{12}$  in the B ring.

This new molecular conformation does not appear to result from any strong or highly directional intermolecular forces in the crystal, although the absence of long range ionic forces in the present structure represents a significant change in the molecular environment. The shortest intermolecular hydrogen bond contacts are about 3.0 Å from  $O_6$  and  $N_2$  to  $O_{by}$  and

 Table VI.
 Bond Distances and Angles for

 5,12a-Diacetyloxytetracycline<sup>a</sup>

|                  |                                  | ,                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|------------------|----------------------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Atom             | Bond                             | Dist, Å              | Angle, deg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $C_1$            | $C_1 - C_2$                      | 1,434 (5)            | $C_2 - C_1 - O_1, 125, 8 (4)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| •                | $C_{1}-C_{128}$                  | 1.531 (5)            | $C_2 - C_1 - C_{128}$ , 115, 1 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                  | $C_1 - O_1$                      | 1.229 (5)            | $O_1 - C_1 - C_{128}$ , 119, 1 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $C_2$            | $C_2 - C_3$                      | 1,397 (6)            | $C_1 - C_2 - C_3$ , 122, 2 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                  | $C_{2}-C_{2}$                    | 1,468 (6)            | $C_1 - C_2 - C_{2x}$ , 120, 2 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                  |                                  |                      | $C_3 - C_2 - C_{2x}$ , 117.3 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| C,               | C₂–C₄                            | 1.535(6)             | $C_{2}-C_{3}-C_{4}$ , 123, 5 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0,               | $C_3 - O_3$                      | 1,291 (5)            | $C_{3}-C_{3}-O_{3}$ , 122.0 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                  | -0 -0                            |                      | $C_4 - C_2 - O_2, 114, 5(3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| C.               | C <sub>4</sub> -C <sub>4</sub>   | 1.558 (5)            | $C_3 - C_4 - C_{43}$ , 110, 6 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| -1               | C <sub>4</sub> -N <sub>4</sub>   | 1 460 (5)            | $C_{2}-C_{4}-N_{4}$ 115 6 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                  |                                  | 11,000 (2)           | $C_{4} = C_{4} = N_{4} + 110 + 4 (3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| C.               | C <sub>4</sub> -C <sub>5</sub>   | 1 519 (5)            | $C_4 = C_{45} = C_{51} = 110 - 5 (3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| <b>~</b> 4a      | C40-C120                         | 1 538 (5)            | $C_4 - C_{40} - C_{100} = 108 \cdot 9 \cdot (3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                  | 04a 012a                         | 1,000 (0)            | $C_5 = C_{40} = C_{120}, 111, 4 (3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| C.               | Cr-Cr                            | 1 563 (5)            | $C_{40} = C_{50} = C_{50}$ , 116, 4 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $\mathbf{c}_{0}$ | $C_r = O_r$                      | 1 479 (4)            | $C_{4a} = C_{5} = O_{5a}$ , 108, 6 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                  | 0, 0,1                           | 1                    | $C_{ta} = C_{t} = O_{ta}$ , 103, 5 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| C.               | CC                               | 1 541 (6)            | $C_{r} = C_{r} = C_{r} = \frac{113}{0} \frac{0}{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| € ba             | $C_{\mu} = C_{\mu}$              | 1.571(0)<br>1.521(5) | $C_{r} = C_{r} = C_{rr} = \frac{113}{2} \frac{2}{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                  | Coa Chia                         | 1.521 (5)            | $C_{1} = C_{12} = C_{11}$ , 110, 5 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| C.               | CC.                              | 1 527 (6)            | $C_{4} = C_{5a} = C_{4} = \frac{108}{2} \frac{2}{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $\mathbf{C}_{6}$ |                                  | 1.527(0)<br>1.525(6) | $C_{5a} = C_{6} = C_{6a}, 100.2 (3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                  | $C_6 - C_{6x}$                   | 1.325(0)<br>1.436(5) | $C_{5a} = C_{6} = C_{6x}, 111.2 (4)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                  | $C_{6} - C_{6}$                  | 1.450(5)             | $C_{5a} = C_{6} = C_{6}$ , 105.1 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                  |                                  |                      | $C_{6a} = C_{6} = C_{6x}, 112.0 (4)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                  |                                  |                      | $C_{6a} = C_6 = O_6, 109.5(3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| C                | C - C-                           | 1 380 (6)            | $C_{6x} = C_6 = C_6, 110.5 (3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| C6a              | $C_{6a} - C_7$                   | 1,309 (0)            | $C_{6}-C_{6a}-C_{7}, 122.9 (4)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                  | C6a-C10a                         | 1.425 (0)            | $C_6 - C_{6a} - C_{10a}$ , 110.1 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| C                | CC                               | 1 405 (6)            | $C_7 - C_{6a} - C_{10a}, 119.0(4)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $C_{i}$          | $C_{7}-C_{8}$                    | 1.403(0)<br>1.270(7) | $C_{6a} - C_{7} - C_{8}$ , 119.7 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| C <sup>8</sup>   | $C_{8}-C_{9}$                    | 1,3/9(7)             | $C_7 - C_8 - C_9, 122.0(4)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| C,               | $C_{9}-C_{10}$                   | 1.398(7)             | $C_8 - C_9 - C_{10}$ , 110. 3 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $C_{10}$         | $C_{10} - C_{10a}$               | 1,399 (5)            | $C_{9}-C_{10}-C_{10a}$ , 121.0 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                  | $C_{10} - O_{10}$                | 1.352(6)             | $C_9 - C_{10} - O_{10}, 110.9 (4)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ~                | <b>C C</b>                       | 1 464 (6)            | $C_{10a} - C_{10} - O_{10}, 122.1 (4)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $C_{10a}$        | $C_{10a} - C_{11}$               | 1,404 (0)            | $C_{10} - C_{10a} - C_{11}, 120.3 (4)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                  |                                  |                      | $C_{10} - C_{10a} - C_{6a}$ , 119.7 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ~                | <b>C C</b>                       | 1 440 (5)            | $C_{11} - C_{10a} - C_{6a}, 119.8 (3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $C_{11}$         | $C_{11} - C_{11a}$               | 1.449 (5)            | $C_{10a} - C_{11} - C_{11a}, 110, 0(3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                  | $C_{11} - O_{11}$                | 1.2/1(5)             | $C_{10a} - C_{11} - O_{11}, 120.2 (3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ~                | <b>C C</b>                       | 1 242 (5)            | $C_{11a} - C_{11} - O_{11}, 120.8 (3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $C_{11a}$        | $C_{11a} - C_{12}$               | 1.342 (5)            | $C_{11} - C_{11a} - C_{12}, 110.9(3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                  |                                  |                      | $C_{11} - C_{11a} - C_{5a}, 110.4 (3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ~                | <b>C C</b>                       | 1 530 (5)            | $C_{12} - C_{11a} - C_{5a}, 122.1(3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $C_{12}$         | $C_{12} - C_{12a}$               | 1.320(3)             | $C_{11a} - C_{12} - C_{12a}, 119.7 (3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                  | $C_{12} - O_{12}$                | 1.337 (3)            | $C_{11a} - C_{12} - O_{12}, 123 \cdot 1 (3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ~                | <b>C O</b>                       | 1 443 (4)            | $C_{12a} - C_{12} - O_{12}, 113.1(3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $C_{12a}$        | $C_{12a}$ - $O_{12ax}$           | 1.443 (4)            | $C_{12} - C_{12a} - O_{12ax}$ , 101.9 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                  |                                  |                      | $C_{12} - C_{12a} - C_1, 110.2(3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                  |                                  |                      | $C_{12} - C_{12a} - C_{4a}, 107.3 (3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                  |                                  |                      | $C_1 - C_{12a} - C_{4a}$ , 113.2 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                  |                                  |                      | $C_1 - C_{12a} - O_{12ax}$ , 110.9 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ~                | <b>C O</b>                       | 1 074 (5)            | $C_{4a} - C_{12a} - O_{12ax}, 112.0(3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $C_{2x}$         | $C_{2x} - O_2$                   | 1.274 (5)            | $C_2 - C_{2x} - O_2, 120.3(4)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                  | $C_{2x}$ -IN <sub>2</sub>        | 1.335(0)             | $C_2 - C_{2x} - N_2$ , 120.0 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| NT               | NC                               | 1 471 (6)            | $O_2 - C_{2x} - N_2$ , 119.3 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $\mathbb{N}_4$   | $N_4 - C_{4x}$                   | 1.4/1 (0)            | $C_4 = N_4 = C_{4x}, 114.0(3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                  | $N_4 - C_{4y}$                   | 1.475 (6)            | $C_{4} = N_{4} - C_{4y}, 112.3 (3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0                | 0 0                              | 1 221 (5)            | $C_{4x} = 1 \times 4^{-1} \times 4^{-1}$ |
| $O_{5x}$         | $O_{3x} - C_{5x}$                | 1,331(3)             | $C_5 - U_{5x} - U_{5x}$ , 110.7 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $C_{5x}$         |                                  | 1.199 (0)            | $O_{5x} = O_{5x} = O_{5y}, 125.0 (4)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                  | C <sub>5x</sub> -C <sub>5y</sub> | 1.311 (8)            | $O_{5x} - C_{5x} - C_{5y}, 110.0 (4)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0                | 0 0                              | 1 270 (4)            | $O_{5y} = O_{5x} = O_{5y}, 124.1 (4)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $O_{12ax}$       | $O_{12ax} - C_{12ax}$            | 1.370(4)             | $C_{12a} - C_{12ax} - C_{12ax}, 120.4 (3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $C_{12ax}$       | $C_{12ax} - O_{12ay}$            | 1.182(3)<br>1.403(4) | $O_{12ax} = O_{12ax} = O_{12ay}, 124.0 (4)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                  | $C_{12ax}$ – $C_{12ay}$          | 1.492 (0)            | $O_{12ax} - C_{12ax} - C_{12ay}, 100.5 (3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                  |                                  |                      | $O_{12ay} - O_{12ax} - O_{12ay}, 121.1$ (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

<sup>a</sup> Numbers in parentheses are estimated standard deviations in last significant figure.

all other contacts are equal to or greater than the sums of the appropriate van der Waals radii.





Figure 2. A stereoscopic representation of 5-hydroxytetracycline.<sup>5</sup>



Figure 3. A stereoscopic representation of the oxytetracycline ring system in 5,12a-diacetyloxytetracycline.

The molecule is rigid; typical root mean square displacements for carbon atoms on the ring system are 0.16 Å and the motion is nearly isotropic. Even the substituent groups show displacements of only about 0.15–0.30 Å, except for the terminal atoms of the acetyl groups which, not unexpectedly, range from 0.20 to 0.50 Å. Some anisotropy appears in the thermal parameters for the D ring, but it appears to reflect a slight concerted motion of that end of the molecule parallel to the  $C_8$ – $C_9$  bond. Parenthetically, it is worth noting that because of this motion the isotropic refinement produced a bond length for  $C_8$ – $C_9$  which was fully 0.04 Å shorter than that which resulted from the full anisotropic refinement.

Since there are relatively few stable conformations accessible to a molecule with such a highly constrained

ring system, it is appropriate to consider the merits of this new conformation as a model for the molecule in solution. In fact, several features of the model are in excellent accord with the results of some recent nmr studies<sup>2</sup> of several oxytetracyclines (including the present one) in various nonaqueous solvents.

The nmr spectra of the protons on  $C_4$ ,  $C_{4a}$ ,  $C_5$ , and  $C_{5a}$  should provide a measure of the dihedral angles around the respective bonds. Thus, the apparent coupling constants of 9–13 cps reported for the bond  $C_4$ – $C_{4a}$  are consistent with a trans conformation<sup>2</sup> across that bond; this condition is met in the present structure with a dihedral angle of 169.8°, but in the other structural model<sup>3,5</sup> this angle is strikingly different (74.0°). Similarly, in the present case, the dihedral angle for the bond  $C_{4a}$ – $C_5$  (85.8°) is consistent with

| Table VII.   | Selected Dihedral | Angles <sup>a</sup> in the |
|--------------|-------------------|----------------------------|
| Tetracycline | Ring System       | -                          |

|        | Atoms                                       | 5-Hydroxytetra-<br>cycline <sup>b</sup><br>HCl, deg | 5,12a-Diacetyl-<br>oxytetracycline,<br>deg |
|--------|---------------------------------------------|-----------------------------------------------------|--------------------------------------------|
| Ring A | $C_{12}-C_{12}-C_1-C_2$                     | -174.7                                              | -80.6                                      |
|        | $C_{12a} - C_1 - C_2 - C_3$                 | 19.2                                                | -7.0                                       |
|        | $C_1 - C_2 - C_3 - C_4$                     | 17.1                                                | -3.7                                       |
|        | $C_2 - C_3 - C_4 - C_{4a}$                  | -17.0                                               | -17.5                                      |
|        | $C_{3}-C_{4}-C_{4a}-C_{5}$                  | 74.0                                                | 169.8                                      |
|        | $C_4 - C_{4a} - C_{12a} - C_1$              | 49.1                                                | - 59.8                                     |
| Ring B | $C_{11}$ - $C_{11a}$ - $C_{12}$ - $C_{12a}$ | <u> </u>                                            | 169.3                                      |
|        | $C_{11a} - C_{12} - C_{12a} - C_1$          | 80.7                                                | 168.6                                      |
|        | $C_{12} - C_{12a}C_{4a} - C_5$              | 48.7                                                | -60.1                                      |
|        | $C_4 - C_{4a} - C_5 - C_{5a}$               | 170.9                                               | -85.8                                      |
|        | $C_{4a} - C_5 - C_{5a} - C_6$               | 162.5                                               | 133.3                                      |
|        | $C_5 - C_{5a} - C_{11a} - C_{12}$           | -13.2                                               | -25.4                                      |
| Ring C | $C_{10}-C_{10a}-C_{11}-C_{11a}$             | 166.5                                               | 157.4                                      |
|        | $C_{10a} - C_{11} - C_{11a} - C_{12}$       | 178.9                                               | -168.0                                     |
|        | $C_{11} - C_{11a} - C_{5a} - C_6$           | 43.0                                                | 35.5                                       |
|        | $C_{5}-C_{5a}-C_{6}-C_{6a}$                 | 175.8                                               | 174.8                                      |
|        | $C_{6a} - C_{6a} - C_{7}$                   | -135.1                                              | -138.9                                     |
|        | $C_6 - C_{6a} - C_{10a} - C_{11}$           | 1.8                                                 | 6.0                                        |
| Ring D | $C_8 - C_9 - C_{10} - C_{10a}$              | 7.7                                                 | -3.0                                       |
|        | $C_9 - C_{10} - C_{10a} - C_{11}$           | 177.0                                               | -174.2                                     |
|        | $C_{10}-C_{10a}-C_{6a}-C_{7}$               | 11.4                                                | 0.1                                        |
|        | $C_6 - C_{6a} - C_7 - C_8$                  | -178.1                                              | -179.3                                     |
|        | $C_{6a} - C_7 - C_8 - C_9$                  | 2.0                                                 | 2.2                                        |
|        | $C_7 - C_8 - C_9 - C_{10}$                  | -2.7                                                | 0.5                                        |

<sup>a</sup> An arbitrary but self-consistent set defined for the sequence a-b-c-d as the positive clockwise rotation from a to d in the projection of the array down the line b-c. <sup>b</sup> The angles reported here have been calculated from the coordinates provided in ref 5, with an estimated error given as  $\sim 0.01$  Å. <sup>c</sup> The estimated error for the coordinates from which these angles were calculated is  $\sim 0.004$  Å.

the small (0-2 cps) apparent coupling constants observed.<sup>2</sup> Moreover, the nearly eclipsed conformation about  $C_5$ - $C_{3a}$  (133.3°) is in accord with the relatively small apparent coupling constants<sup>2</sup> (<4 cps) across this bond.

In contrast to these results on the oxytetracycline systems it should be noted<sup>2</sup> that the nmr results on

tetracycline in nonaqueous solvents are more nearly in accord with the previously reported<sup>3,5</sup> molecular conformation.

Circular dichroism (CD) spectra<sup>7</sup> of dilute solutions of variously substituted tetracyclines and oxytetracyclines in aqueous HCl (0.03 N) all have the same general shape and intensity. Moreover, the spectra are insensitive to the removal of asymmetry at  $C_5$  and  $C_6$ , two of the six asymmetric centers of the molecule. This suggests<sup>7</sup> that the spectra primarily reflect the detailed twisting or chirality of the chromophores and that these substances all belong to the same stereochemical family and possess the same conformation.

The CD band at 262 nm was assigned to the  $\pi \rightarrow \pi^*$ transition of the highly enolized  $\beta$ -tricarbonyl chromophore of the A ring; the rest of the spectrum was attributed to the BCD chromophore that includes the D ring and the partially conjugated system between  $O_{10}$  and  $O_{12}$ . The interaction with these chromophores was probed with epi substitution at C<sub>4</sub> and at C<sub>5</sub> and it was concluded<sup>7</sup> that the molecular conformation was close to that reported in the hydrochloride salt structures.<sup>3,5</sup>

In the present conformation, the chirality of the twisting of both chromophores is reversed with respect to the other conformation. This is reflected, in the A ring, in a reversal of the signs of the dihedral angles at  $C_1$ - $C_2$  and  $C_2$ - $C_3$  and, in the BCD chromophore, by a similar reversal in the signs of the dihedral angles at  $C_{11}$ - $C_{11a}$  and  $C_{11a}$ - $C_{12}$ . If the present conformation were to be retained, either in aqueous or nonaqueous solutions, the CD spectrum would be significantly affected. This question must be held for future elaboration after completion of an nmr and CD study.

Acknowledgment. The authors gratefully acknowledge support from the National Institutes of Health (Grant No. GM-14832-03 and AI-07626-05), from the NSF (GP-13351), and from the Materials Science Center, Cornell University.